HS5E Miniature Interlock Switches with Solenoid

Small safety switch with four poles and solenoid.
 Ideal for applications in tight spaces.

- Compact body. $35 \times 40 \times 146 \mathrm{~mm}$.
- Rear unlocking button for emergency escape available. Also available is the rear unlocking button kit.
- A variety of circuits-dual safety circuit and four-circuit independent outputs available.
- Gold-plated contacts.
- Spring lock and solenoid lock are available.
- The head orientation can be rotated, allowing 8 different actuator entries.
- A metal entry slot ensures high durability.
- An actuator with rubber bushings alleviates the impact of actuator entry into the slot.
- The actuator retention force is 1400 N minimum (GS-ET-19).
- Integral cable design minimizes wiring, preventing wiring mistakes.
- LED indicator indicates the solenoid status.
- Double insulation structure.

Spring Lock

- Automatically locks the actuator without power applied to the solenoid.
- After the machine stops, unlocking is completed by the solenoid, providing high safety features.
- Manual unlocking is possible in the event of power failure or maintenance.

©

Solenoid Lock

- The actuator is locked when energized.
- The actuator is unlocked when de-energized.
- Flexible locking function can be achieved for an application where locking is not required and sudden stopping of machine must be prevented.

Specifications

Applicable Standards	ISO14119, IEC60947-5-1, EN60947-5-1 (TÜV approval), EN1088 (TÜV approval), GS-ET-19 (BG approval), UL508 (UL recognized), CSA C22.2, No. 14 (c-UL recognized), GB14048.5 (CCC approval)
	IEC60204-1/EN60204-1 (applicable standards for use)
Operating Temperature	-25 to $+50^{\circ} \mathrm{C}$ (no freezing)
Relative Humidity	45 to 85\% (no condensation)
Storage Temperature	-40 to $+80^{\circ} \mathrm{C}$ (no freezing)
Pollution Degree	3
Impulse Withstand Voltage	2.5 kV (between LED, solenoid and grounding: 0.5 kV)
Insulation Resistance (500V DC megger)	Between live and dead metal parts: $100 \mathrm{M} \Omega$ minimum Between live metal part and ground: $100 \mathrm{M} \Omega$ minimum Between live metal parts: $100 \mathrm{M} \Omega$ minimum Between terminals of the same pole: $100 \mathrm{M} \Omega$ minimum
Electric Shock Protection	Class II (IEC61140)
Degree of Protection	IP67 (IEC60529)
Shock Resistance	Operating extremes: $100 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})$ Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}(100 \mathrm{G})$
Vibration Resistance	Operating extremes: 10 to 55 Hz , amplitude 0.35 mm minimum Damage limits: $\quad 30 \mathrm{~Hz}$, amplitude 1.5 mm minimum
Actuator Operating Speed	0.05 to $1.0 \mathrm{~m} / \mathrm{s}$
Direct Opening Travel	$\begin{array}{ll}\text { Actuator HS9Z-A51: } & 11 \mathrm{~mm} \text { minimum } \\ \text { Actuator HS9Z-A51A/A52/A52A/A53/A55: } & 12 \mathrm{~mm} \text { minimum }\end{array}$
Direct Opening Force	80N minimum
Actuator Retention Force	1400N minimum (GS-ET-19) (See page 45 for actuator retention force.)
Operating Frequency	900 operations per hour
Rear Unlock Button Mechanical Durability	3000 operations minimum (HS5E-**L)
Mechanical Durability	1,000,000 operations minimum (GS-ET-19)
Electrical Durability	100,000 operations minimum (operating frequency 900 operations per hour, load AC-12, 250V, 1A) $1,000,000$ operations minimum (operating frequency 900 operations per hour, load 24 V AC/DC. 100 mA)
Conditional Short-circuit Current	50 A (250V) (Use 250V/10A fast acting type fuse for short-circuit protection.)
Cable	UL2464 HS5E-V: AWG22 (12-core, $0.3 \mathrm{~mm}^{2} /$ core) Others: AWG21(8-core: $0.5 \mathrm{~mm}^{2} /$ core)
Cable Outside Diameter	$\varnothing 7.6$ mm
Weight (approx.)	400 g (1 m cable), 580 g (3 m cable), 770 g (5 m cable). . Add 20 g for rear unlocking button.

Ratings

Contact Ratings

Rated Insulation Voltage (Ui) (Note 1)			250 V (between LED or solenoid and ground: $30 \mathrm{~V})$		
Rated Thermal Current (lth)			2.5A		
	Four-circuit Independent Output (HS5E-V)		Operating temp.: $-25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ (not included) 2.5A (1 or 2 circuits) 1.0A (3 or 4 circuits)		Operating temp.: $35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ 1.0A (1 circuit) 0.5 A (2 to 4 circuits)
Rated Voltage (Ue)			30 V	125 V	250 V
Rated Current (le) (Note 2)	AC	Resistive Load (AC-12)	-	2A	1A
		Inductive Load (AC-15)	-	1A	0.5A
	DC	Resistive Load (DC-12)	2 A	0.4A	0.2A
		Inductive Load (DC-13)	1A	0.22A	0.1A

- Minimum applicable load (reference value): 3V AC/DC, 5 mA
(Applicable range may vary with operating conditions and load types.)
Note 1: UL rating: 125 V
Note 2: TÜV, BG rating: AC-15 0.5A/250V, DC-13 0.22A/125V
UL, c-UL rating: Pilot duty AC $0.5 \mathrm{~A} / 125 \mathrm{~V}$,
Pilot duty DC $0.22 \mathrm{~A} / 125 \mathrm{~V}$

Part No. Development

Standard

Lock Mechanism	Circuit Code	Contact Configuration	Indicator	Cable Length	Part No.
Spring Lock	A		Without	1 m	HS5E-A4001
				3 m	HS5E-A4003
				5 m	HS5E-A4005
			With	1 m	HS5E-A4401-G
				3 m	HS5E-A4403-G
				5 m	HS5E-A4405-G
	B	Main Circuit: 1NC+1NC, Door Monitor Circuit: 1NO,	Without	1 m	HS5E-B4001
				3 m	HS5E-B4003
				5 m	HS5E-B4005
			With	1 m	HS5E-B4401-G
				3 m	HS5E-B4403-G
				5 m	HS5E-B4405-G
	C		Without	1 m	HS5E-C4001
				3 m	HS5E-C4003
				5 m	HS5E-C4005
			With	1 m	HS5E-C4401-G
				3 m	HS5E-C4403-G
				5 m	HS5E-C4405-G
	D	Main Circuit: 1NC+1NC, Door Monitor Circuit: 1NC, Lock Monitor Circuit: 1NC Main Circuit: Monitor Circuit: Monitor Circuit:	Without	1 m	HS5E-D4001
				3 m	HS5E-D4003
				5 m	HS5E-D4005
			With	1 m	HS5E-D4401-G
				3 m	HS5E-D4403-G
				5 m	HS5E-D4405-G
	F	Main Circuit: 1NC+1NC, Door Monitor Circuit: 2NC	Without	1 m	HS5E-F4001
				3 m	HS5E-F4003
		Main Circuit: $\Theta 11$ 12 41×42		5 m	HS5E-F4005
		Monitor Circuit: $\Theta 21+22$	With	1 m	HS5E-F4401-G
				3 m	HS5E-F4403-G
				5 m	HS5E-F4405-G
	G	Main Circuit: 1NC+1NC, Door Monitor Circuit: 1 1NC, 1NO	Without	1 m	HS5E-G4001
				3 m	HS5E-G4003
		Main Circuit: $\quad \Theta 11+12041+42$		5 m	HS5E-G4005
		Monitor Circuit: $\begin{array}{l:l} 21 & 22 \\ 33 & 34 \\ \hline \end{array}$	With	1 m	HS5E-G4401-G
				3 m	HS5E-G4403-G
				5 m	HS5E-G4405-G
	H	Main Circuit: 1NC+1NC, Lock Monitor Circuit: 2NC	Without	1 m	HS5E-H4001
				3 m	HS5E-H4003
		Main Circuit: \quad ¢11 $12 \quad 41$ 42		5 m	HS5E-H4005
		Monitor Circuit:	With	1 m	HS5E-H4401-G
				3 m	HS5E-H4403-G
				5 m	HS5E-H4405-G
	J	Main Circuit: 1NC+1NC, Lock Monitor Circuit: 1NC, 1NO Main Circuit: Monitor Circuit: Monitor Circuit:	Without	1 m	HS5E-J4001
				3 m	HS5E-J4003
				5 m	HS5E-J4005
			With	1 m	HS5E-J4401-G
				3 m	HS5E-J4403-G
				5 m	HS5E-J4405-G

[^0]Standard

[^1]Rear Unlocking Button

- The contact configuration shows the status when the actuator is inserted and the switch is locked.
- Actuators are not supplied with the interlock switch and must be ordered separately.

Dual Safety Circuit

Lock Mechanism	Circuit Code	Contact Configuration	Indicator	Cable Length	Part No.
Spring Lock	DD		With	1 m	HS5E-DD4401-G
				3 m	HS5E-DD4403-G
				5 m	HS5E-DD4405-G

[^2]Four-circuit Independent Output

[^3]
Dimensions

HS5E-पロ4D-G (with indicator)
Horizontal Mounting/Straight Actuator (HS9Z-A51)

Vertical Mounting/Right-angle Actuator (HS9Z-A52)

($\varnothing 4.3$ or M4 tapped hole)
Mounting Hole Layout

HS5E- $\quad 44 \mathrm{~L}$-G (rear unlocking button)
All dimensions in mm. Horizontal Mounting/Straight Actuator (HS9Z-A51)

Note: With the mounting hole dimension, the rear unlocking button rod does not touch the hole even when the interlock switch moves sideways.

Actuator Mounting Reference Position

As shown in the figure on the right, the mounting reference position of the actuator when inserted in the interlock switch is where the actuator stop placed on the actuator lightly touches the interlock switch.
Note: After mounting the actuator, remove the actuator stop from the actuator.

Actuators

Description	Actuator Retention Force	Part No.
Straight	1400N minimum	HS9Z-A51
Straight w/rubber bushings		HS9Z-A51A
Right-angle		HS9Z-A52
Right-angle w/rubber bushings		HS9Z-A52A
Angle Adjustable (vertical)		HS9Z-A53
Angle Adjustable (vertical/horizontal) (Note 1)	500N minimum	HS9Z-A55
Sliding Actuator (Note 2)	1000N minimum	HS9Z-SH5

Note 1: When retention force of more than 500 N is required, use HS9Z-A53.
Note 2: For details, see page 82.

Dimensions and Mounting Hole Layouts

Straight Actuator (HS9Z-A51)

Straight Actuator w/Rubber Bushings (HS9Z-A51A)

Actuator Stop (Note)

Angle Adjustable (vertical) (HS9Z-A53)

Note: The actuator stop is supplied with the actuator and used when adjusting the actuator position. Remove after the actuator position is determined.

Actuator Orientation

The orientation of actuator swing (horizontal/vertical) can be changed using the orienting insert (white plastic) installed on the back of the actuator. Do not lose the orientating insert, otherwise the actuator will not swing properly.

Right-angle Actuator (HS9Z-A52)

Acuator Stop (supplied with the actuator) (Note)

Right-angle Actuator w/Rubber Bushings (HS9Z-A52A)

- When the mounting center distance is set to 12 mm , the actuator has flexibility both vertically and horizontally.
- When the mounting center distance is set to 20 mm , the actuator swings vertically. Adjust the distance by moving the rubber bushings

Angle Adjustable (vertical/horizontal) (HS9Z-A55)

Vertical Adjustment

Actuator Mounting Hole Layout (horizontal/vertical swing)
2-M4 Screw

Accessories

Description	Part No．	Remarks
Sliding Actuator	HS9Z－SH5	See page 82 for details．
寺 Handle unit for right－hand door	HS9Z－DH5RH	Choose according to the required opening side．
	HS9Z－DH5LH	
（See page 74）Switch cover unit	HS9Z－DH5C	Used for installing the interlock switch inside．
Plug Actuator	HS9Z－A5P	
Padlock Hasp	HS9Z－PH5	
Mounting Plate（Note 1）	HS9Z－SP51	When using the HS5E－ロ44LD－G，provide a mounting hole for the unlocking button as shown below in the mounting plate mounting hole layout．
Rear Unlocking Button Kit（Note 2）	HS9Z－FL53	Used when the total thickness of mounting frame，panel，and mounting plate $*$ is： $23<X \leq 33$ （ $20<\mathrm{X} \leq 30$ when switch cover unit HS9Z－DH5C is used）
	HS9Z－FL54	Used when the total thickness of mounting frame，panel，and mounting plate $*$ is： $33<X \leq 43$ （ $30<\mathrm{X} \leq 40$ when switch cover unit HS9Z－DH5C is used）
	HS9Z－FL55	Used when the total thickness of mounting frame，panel，and mounting plate $*$ is： $43<X \leq 53$ （ $40<\mathrm{X} \leq 50$ when switch cover unit HS9Z－DH5C is used）

Note 1：When mounting HS5E－KVAOL（rear unlocking button）using a mounting plate，provide mounting holes on the mounting plate as shown below and use Rear Unlocking Button Kit（HS9Z－FL5ם）．
Note 2：See the table at right for choosing rear unlocking button kit．

Dimensions

Mounting Plate（HS9Z－SP51）

Drilling Rear Unlocking
Button Hole

When installing the HS5E－■44Lロ－G （rear unlocking button），provide a rear unlocking button hole on the HS9Z－SP51．

Manual Unlocking Key（metal） （HS9Z－T3）

Manual Unlocking Key（plastic）

Material：Anodized aluminum A6063
Weight：Approx．180g

Rear Unlocking Button Kit（HS9Z－FL5口）

Note：With the mounting hole dimension， the rear unlocking button rod does not touch the hole even when the interlock switch moves sideways．

Example：

When mounting on 30mm－thick frame using HS9Z－SP51 mounting plate，the panel thickness is $40(10+30)$ ．Select HS9Z－FL54 rear unlocking button kit．

Circuit Diagrams and Operating Characteristics

Standard and Rear Unlocking - Spring Lock

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Manual Unlock
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized
Door Status			5	.			
Circuit Diagram (HS5E-A4)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
			OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit $11-42$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
			ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\underset{\substack{\text { Main Circuit } \\ 11-42}}{ }$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ (\text { unnlocked }) \\ 53-54 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door Closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\underset{\substack{\text { Monitor Circuit } \\ \text { (locked) } \\ 51-52}}{\substack{\text { 2 } \\ \hline}}$ 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door Cllosed) } \\ 31-32 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\underset{\substack{\text { Main Circuit } \\ 11-42}}{ }$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door openit } \\ 33-34 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Monitor Circuit $\begin{array}{c}\text { (locked) } \\ 61-62\end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	HS5E-J4 Main Circuit: Montior Moncuit Montior Cricuit: 611	$\begin{aligned} & \text { Main Circuit } \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
Solenoid Power A1-A2 (all model)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

[^4]Standard - Solenoid Lock

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Unlocked with Manual Unlocking Key
			- Door Closed - Machine ready to operate - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized \rightarrow energized
Door Status							
Circuit Diagram (HS5E-A7Y)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		Main Circuit $11-42$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ (\text { unlocked) } \\ 53-54 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\underset{\substack{\text { Monitor Circuit } \\ \text { (locked) } \\ 51-52}}{\substack{\text { and } \\ \text { (d }}}$ 51-52	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit 11-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\underset{\substack{\text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54}}{ }$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		Main Circuit 11-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open).	ON (closed)
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{aligned} & \text { Main Circuit } \\ & 11-42 \end{aligned}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Clircuit } \\ \text { (door closed) } \\ 31-32 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c} \hline \text { Monitor Circuit } \\ \text { (door open) } \\ 33-34 \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{gathered} \text { Main Circuit } \\ 11-42 \end{gathered}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Monitor Circuit (locked) $61-62$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Main Circuit 11-42	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 63-64 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
Solenoid Power A1-A2 (all model)			ON (energized)	OFF (de-energized)	OFF (de-energized)	$\begin{gathered} \text { ON (energized) } \\ \text { (Note 2) } \\ \hline \end{gathered}$	OFF to ON (Note 1) (Note 2)

- The above contact configuration shows the status when the actuator is inserted and locked.
- Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Operation Chracteristics (reference)

Note 1: Do not attempt manual unlocking when the solenoid is energized.
Note 2: Do not energize the solenoid for a long time while the door is open or when the door is unlocked manually

- The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuators, add 1.3 mm .
- The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

Dual Safety Circuit

- The above contact configuration shows the status when the actuator is inserted and locked. Note: Actuator can be unlocked manually for confirming the door
- Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals movement before wiring and energizing, and also for emergency of the protective door.

Operation Chracteristics (reference)

- The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuators, add 1.3 mm
- The operation characteristics show the contact status when the actuato enters the entry slot of an interlock switch.

Four-circuit Independent Output - Spring Lock

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Unlocked with Manual Unlocking Key
			- Door Closed - Machine ready to operate - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Closed - Machine cannot be operated - Solenoid de-energized
Door Status							
Circuit Diagram (HS5E-VA4)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		$\left.\begin{array}{\|c\|c\|} \hline \text { Monitor rircuint } \\ \text { (door closed) } \\ 11-12 \end{array} \right\rvert\,$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\substack{\text { Monitor Circuit } \\ \text { (locked) } \\ 51-52}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	HS5E-VC4	$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\substack{\text { Monitor Circuit } \\ \text { (unlocked) } \\ \text { 53-54 }}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		$\begin{array}{\|c\|c\|} \hline \text { Monitor Circuit } \\ \text { (door closed) } \\ \text { 11-12 } \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ \text { 21-22 } \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		Monitor Circuit (locked) $51-52$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all model)			OFF (de-energized)	ON (energized)	ON (energized)	OFF (de-energized)	OFF (de-energized)

- The above contact configuration shows the status when the actuator is inserted and locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Note: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also for emergency situation such as power failure.

Operation Chracteristics (reference)

[^5]Four-circuit Independent Output - Solenoid Lock

Interlock Switch Status			Status 1	Status 2	Status 3	Status 4	Unlocked with Manual Unlocking Key
			- Door Closed - Machine ready to operate - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid de-energized	- Door Open - Machine cannot be operated - Solenoid energized	- Door Closed - Machine cannot be operated - Solenoid de-energized \rightarrow energized
Door Status							
Circuit Diagram (HS5E-VA7Y)							
Door			Closed (locked)	Closed (unlocked)	Open	Open	Closed (unlocked)
		$\begin{aligned} & \hline \text { Monitor Circuit } \\ & \text { (door closed) } \\ & 11-12 \end{aligned}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
	HS5E-VB7Y Monitor Circuit: Θ Monitor Circuit Monitor Circuit:	$\begin{array}{\|c\|c\|} \hline \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door open) } \\ 23-24 \end{array} \\ \hline \end{array}$	OFF (open)	OFF (open)	ON (closed)	ON (closed)	OFF (open)
			ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
	HS5E-VC7Y	$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|c\|} \hline \text { Monitor Circuit } \\ \text { (door closed) } \\ 21-22 \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (unlocked) } \\ 53-54 \end{array} \\ \hline \end{array}$	OFF (open)	ON (closed)	ON (closed)	ON (closed)	ON (closed)
		$\begin{array}{\|c} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (door closed) } \\ 11-12 \end{array} \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (door Closed) } \\ 21-22 \\ \hline \end{array}$	ON (closed)	ON (closed)	OFF (open)	OFF (open)	ON (closed)
		$\begin{array}{\|c\|} \hline \text { Monitor Circuit } \\ \text { (locked) } \\ 41-42 \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
		$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Monitor Circuit } \\ \text { (locked) } \\ 51-52 \end{array} \\ \hline \end{array}$	ON (closed)	OFF (open)	OFF (open)	OFF (open)	OFF (open)
Solenoid Power A1-A2 (all model)			ON (energized)	OFF (de-energized)	OFF (de-energized)	$\begin{aligned} & \text { ON (energized) } \\ & \text { (Note 2) } \\ & \hline \end{aligned}$	OFF (de-energized) to ON (energized) (Note 1) (Note 2)

- The above contact configuration shows the status when the actuator is inserted and locked.
- Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

Note 1: Do not attempt manual unlocking when the solenoid is energized.
Note 2: Do not energize the solenoid for a long time while the door is open or when the door is unlocked manually.

Operation Chracteristics (reference)

Safety Precautions

- In order to avoid electric shock or fire, turn power off before installation, removal, wire connection, maintenance, or inspection of the interlock switch.
- If relays are used in the circuit between the interlock switch and the load, consider the danger and use safety relays, since welded or sticking contacts of standard relays may invalidate the functions of the interlock switch. Perform a risk assessment and establish a safety circuit which satisfies the requirement of the safety category.
- Do not place a PLC in the circuit between the interlock switch and the load. Safety security can be endangered in the event of a malfunction of the PLC.
- Do not disassemble or modify the interlock switch, otherwise a breakdown or an accident may occur.
- Do not install the actuator in a location where the human body may come in contact. Otherwise injury may occur.
- Solenoid lock is locked when energized, and unlocked when de-energized. When energization is interrupted due to wire disconnection or other failures, the interlock switch may be unlocked causing possible danger to the operators. Solenoid lock must not be used in applications where locking is strictly required for safety. Perform a risk assessment and determine whether solenoid lock is appropriate.
- When changing the head orientation, disconnect the cable and turn the manual unlock to the UNLOCK position in advance. If the head orientation is changed when the cable is connected and the manual unlock is in the LOCK position, machines may start to operate, causing danger to the operators.
-When using the four-circuit independent output type as an input to safety circuit, connect the door monitor circuits (11-12, $21-22,31-32) \Theta$ and lock monitor circuits (41-42, 51-52, 61-62) in series.

Instructions

- Regardless of door types, do not use the interlock switch as a door stop. Install a mechanical door stop at the end of the door to protect the interlock switch against excessive force.
- Do not apply excessive shock to the interlock switch when opening or closing the door. A shock to the interlock switch exceeding $1,000 \mathrm{~m} / \mathrm{s}^{2}$ may cause damage to the interlock switch.
- Prevent foreign objects such as dust and liquids from entering the interlock switch while connecting a conduit or wiring.
- If the operating atmosphere is contaminated, use a protective cover to prevent the entry of foreign objects into the interlock switch through the actuator entry slots.
- Entry of foreign objects into the interlock switch may affect the mechanism of the interlock switch and cause a breakdown.
- Plug the unused actuator entry slot using the slot plug supplied with the interlock switch.
- Do not store the interlock switches in a dusty, humid, or organic-gas atmosphere.
- Use proprietary actuators only. When other actuators are used, the interlock switch may be damaged.
- Do not modify the actuator, otherwise it will damage the interlock switch.
- Do not open the lid of the interlock switch. Loosening the screws may cause damage to the interlock switch.
- The actuator retention force is 1400 N . Do not apply a load higher than the rated value. When a higher load is expected, provide an additional system consisting of another interlock switch without lock (such as the HS5B interlock switch) or a sensor to detect door opening and stop the machine.
- Regardless of door types, do not use the interlock switch as a door lock. Install a separate lock using a latch or other measures.
- While the solenoid is energized, the interlock switch temperature rises approximately $40^{\circ} \mathrm{C}$ above the ambient temperature (to approximately $90^{\circ} \mathrm{C}$ while the ambient temperature is $50^{\circ} \mathrm{C}$). To prevent burns, do not touch. If cables come into contact with the interlock switch, use heat-resistant cables.
- Solenoid has polarity. Be sure of the correct polarity when wiring, otherwise solenoid will be damaged. Do not apply voltage over the rated voltage, otherwise the solenoid will be burnt.
- Although the HS9Z-A51A and HS9Z-A52A actuators (w/ rubber bushings) alleviate the shock when the actuator enters a slot in the interlock switch, make sure that excessive shock is not applied. If the rubber bushings become deformed or cracked, replace with new ones.

Minimum Radius of Hinged Door

- When using the interlock switch for a hinged door, refer to the minimum radius of doors shown below. For the doors with small minimum radius, use angle adjustable actuators (HS9Z-A53 or HS9Z-A55).
Note: Because deviation or dislocation of hinged door may occur in actual applications, make sure of the correct operation before installation.

HS9Z-A52 Actuator

- When the door hinge is on the extension line of the interlock switch surface:

- When the door hinge is on the extension line of the actuator mounting surface:

HS9Z-A52A Actuator (w/rubber bushings)

- When the door hinge is on the extension line of the interlock switch surface:

Instructions

- When the door hinge is on the extension line of the actuator mounting surface:

Actuator Angle Adjustment

- Using the angle adjustment screw, the actuator angle can be adjusted (refer to the dimensional drawing on page 45). Adjustable angle: 0 to 20°
- The larger the adjusted angle of the actuator, the smaller the applicable radius of the door opening.
- After installing the actuator, open the door. Then adjust the actuator so that its edge can be inserted properly into the actuator entry slot of the interlock switch.
- After adjusting the actuator angle, apply Loctite to the adjustment screw so that the screw will not move.

When using the HS9Z-A53 Angle Adjustable (vertical) Actuator

- When the door hinge is on the extension line of the interlock switch surface: 50 mm
- When the door hinge is on the extension line of the actuator mounting surface: 80 mm

When using the HS9Z-A55 Angle Adjustable (vertical/horizontal) Actuator

- When the door hinge is on the extension line of the interlock switch surface: 50 mm

Horizontal Swing

- When the door hinge is on the extension line of the actuator mounting surface: 70 mm

Mounting Examples

Installing the Head

Do not use the plastic and metal head of he HS5B interlock switches on the HS5E. The metal heads of the HS5E and HS5B interlock switches look similar. When using these interlock switches adjacently, ensure that the heads are not interchanged.

The HS5E metal head can be distinguished easily with the black plastic part (HS5E metal head has gray plastic part).

Rotating the Head

The head of the HS5E can be rotated by removing the four screws from the corners of the HS5E head and reinstalling the head in the desired orientation. Before wiring the HS5E, replace the head if necessary. Before replacing the head, turn the manual unlock to the UNLOCK position using the manual unlock key. When reinstalling the head, make sure that no foreign object enters the interlock switch. Tighten the screws tightly, without leaving space between the head and body, otherwise the interlock switch may malfunction.
Recommended tightening torque: 0.9 to $1.1 \mathrm{~N} \cdot \mathrm{~m}$.

Instructions

For Manual Unlocking

Spring lock

The HS5E allows manual unlocking of the actuator to precheck proper door movement before wiring or turning power on, as well as for emergency use such as a power failure.

Solenoid lock

The solenoid lock interlock switch normally does not need the manual unlock. However, only when the interlock switch would not release the actuator even though the solenoid is de-energized, the interlock switch can be unlocked manually. Unlock the interlock switch manually only when the solenoid is de-energized. Do not unlock the interlock switch manually when the solenoid is energized.

Manual Unlocking Position

- When locking or unlocking the interlock switch manually, turn the key fully using the manual unlock key supplied with the interlock switch.
- Using the interlock switch with the key not fully turned (less than 90°) may cause damage to the interlock switch or operation failures (when manually unlocked, the interlock switch will keep the main circuit disconnected and the door unlocked).
- Do not apply excessive force to the manual unlock, otherwise the manual unlock will become damaged.
- Do not leave the manual unlock key attached to the interlock switch during operation. This is dangerous because the interlock switch can always be unlocked while the machine is in operation.

Manual Unlocking Key
(supplied with the switch)

Safety Precautions

Before manually unlocking the interlock switch, make sure that the machine has come to a complete stop. Manual unlocking during operation may unlock the interlock switch before the machine stops, and the function of interlock switch with solenoid is lost.

Installing the Rear Unlocking Button

After installing the interlock switch on the panel, place the rear unlocking button (supplied with the switch) on the push rod on the back of the interlock switch, and fasten the button using the M3 sems screw. Rear unlocking button can be installed alone when the total thickness of mounting frame and panel is 6 mm or less. When the total thickness of mounting frame, panel, and mounting plate is 23 to 53 mm , use the rear unlocking button kit (HS9Z-FL5*) sold separately.

Safety Precautions

After installing the rear unlocking button, apply Loctite to the screw so that the screw does not become loose. The button is made of glass-reinforced PA66 (66 nylon). The screw is made of iron. Take the compatibility of the plastic material and Loctite into consideration.

Installing the Rear Unlocking Button Kit

1. Install the connecting rod onto the push rod on the HS5E-L rear unlocking button interlock switch.
2. A pin is attached to the connecting rod. Insert the pin into the hole in the push rod, using pliers.
3. Pull the connecting rod from the hole in the mounting frame, and turn the button operating pin to the horizonta position.

Connecting Rod Orientation

Safety Precautions

Ensure that the connecting rod is pulled out completely and it is horizontal to the interlock switch, otherwise the unlocking button cannot be installed.
Note: Frame must be supplied by the user.
For the mounting hole layout of interlock switches, see page 44. When using the mounting plate HS9Z-SP51, provide a hole for the connecting rod in the plate according to the mounting plate mounting hole layout shown on page 46.
4. Install the unlocking button on the connecting rod by fitting the pin to the grooves on the back of the button, and fasten the base plate on the mounting frame using the screws.

5. After fastening the screws, check if locking and unlocking operations can be performed.

Instructions

Safety Precautions

Install the rear unlocking button kit in the correct direction as shown below. Do not install the kit in incorrect directions, otherwise malfunction will be caused.

Correct
Incorrect

Do not apply strong force exceeding $100 \mathrm{~m} / \mathrm{s}^{2}$ to the interlock switch while the rear unlocking button is not pressed, otherwise malfunction will be caused.

Manual Unlocking using the Rear Unlocking Button

- The rear unlocking button is used by the operator confined in a hazardous area for emergent escape.

How to operate

- When the rear unlocking button is pressed, the interlock switch is unlocked and the door can be opened.
- To lock the interlock switch, pull back the button.
- When the button remains pressed, the interlock switch cannot be locked even if the door is closed, and the main circuit remains open.

Safety Precautions

- Install the rear unlocking button in the place where only the operator inside the hazardous area can use it. Do not install the button in the place where an operator outside the hazardous area can use it, otherwise the interlock switch can be unlocked during usual machine operation, causing danger.
- Operate the rear unlocking button by hand only. Do not operate using a tool or with excessive force. Do not apply force to the button from the direction other than the proper direction, otherwise the button will be damaged.

Recommended Tightening Torque

- HS5E interlock switch: 1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (four M4 screws) (Note)
- Rear unlocking button: 0.5 to $0.7 \mathrm{~N} \cdot \mathrm{~m}$
- Rear unlocking button kit: 4.8 to 5.2 N•m (M5 screw)
- Actuators

HS9Z-A51:	1.8 to $2.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A52:	0.8 to $1.2 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 Phillips screws)
HS9Z-A51A/A52A:	1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)
HS9Z-A53:	4.5 to $5.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M6 screws)
HS9Z-A55:	1.0 to $1.5 \mathrm{~N} \cdot \mathrm{~m}$ (two M4 screws)

Note: The above recommended tightening torque of the mounting screws are the values with hex socket head bolts. When other screws are used and tightened to a smaller torque, make sure that the screws do not become loose after mounting.

- To avoid unauthorized or unintended removal of the interlock switch and the actuator, it is recommended that the interlock switch and the actuator are installed in an unremovable manner, for example using special screws or welding the screws.
- When installing the HS9Z-A51A and HS9Z-A52A actuators, use the washer (supplied with the actuator) on the hinged door, and mount tightly using two M4 screws.
Mounting centers:
12 mm (factory setting), adjustable to 20 mm

Note: Choose mounting centers of either 12 mm or 20 mm .

Cables

- Do not fasten or loosen the gland at the bottom of the safety switch.
- When bending the cable during wiring, make sure that the cable radius is kept at 30 mm minimum.
- When wiring, make sure that water or oil does not enter the cable.
- Do not open the lid of the interlock switch. Otherwise the interlock switch will be damaged.

Instructions

Wire Identification

Wires can be identified by color and a white line printed on the wire.

- HS5E-V: Wires of gray and gray/white insulation cannot be used.
- HS5E-DD: Wires of brown and brown/white insulation cannot be used.

No.	Insulation	No.	Insulation	No.	Insulation	No.	Insulation
1	White	4	Blue	7	Blue/White	10	Pink/White
2	Black	5	Brown/White	8	Orange/White	11	Gray
3	Brown	6	Orange	9	Pink	12	Gray/White

Terminal Number Identification

- When wiring, the terminal number of each contact can be identified by wire color.
- The following table shows the identification of terminal numbers.

Model	Circuit Diagram
HS5E-A	
HS5E-B	Main Circuit: Blue Θ 11 12 41 Monitor Circuit: Orange 23 24 Orange/White Monitor Circuit: Brown 51 52
HS5E-C	
HS5E-D	Main Circuit: Blue Θ 11 12 Monitor Circuit: Orange Θ 21 21 22 Monitor Circuit: Orange/White 42 Blue/White Brown 51 52
HS5E-F	Main Circuit: Blue Θ Monitor Circuit: Orange Θ Monitor Circuit: Brown Θ Θ
HS5E-G	
HS5E-H	
HS5E-J	
HS5E-DD	Main Circuit ©: Blue Θ 11 12 41 Main Circuit §: Orange Θ 21 42

- When wiring, cut unnecessary wires such as the dummy insulation (white) and any unused wires.

Model	Circuit Diagram
HS5E-VA	
HS5E-VB	Monitor Circuit: Blue Θ 11 12 Blue/White Pink 41 42 Pink/White Monitor Circuit: Orange 23 24 Monitor Circuit: Orange/White
HS5E-VC	
HS5E-VD	Monitor Circuit: Blue Θ 11 12 Mlue/White Pink 41 42 Pink/White Monitor Circuit: Orange Θ 21 22 Orange/White Monitor Circuit: Brown 51 52 Brown/White

- The above contact configuration shows the status when the actuator is inserted and locked.

[^0]: - The contact configuration shows the status when the actuator is inserted and the switch is locked.
 - The contact configuration shows the status when the indicator is installed.
 - Actuators are not supplied with the interlock switch and must be ordered separately.

[^1]: - The contact configuration shows the status when the actuator is inserted and the switch is locked
 - The contact configuration shows the status when the indicator is installed.
 - Actuators are not supplied with the interlock switch and must be ordered separately.

[^2]: - The contact configuration shows the status when the actuator is inserted and the switch is locked.
 - Actuators are not supplied with the interlock switch and must be ordered separately.

[^3]: - The contact configuration shows the status when the actuator is inserted and the switch is locked.
 - Actuators are not supplied with the interlock switch and must be ordered separately.

[^4]: - The above contact configuration shows the status when the actuator is inserted and locked
 - Main Circuit: Connected to the control circuit of machine drive part, sending interlock signals of the protective door.
 - Monitor Circuit: Sends monitoring signals of protective door open/closed status or protective door lock/unlock status.

 Operation Chracteristics (reference)
 Note 1: Actuator can be unlocked manually for confirming the door movement before wiring and energizing, and also door movement before wiring and energizing, and
 for emergency situation such as power failure.
 Note 2: When the operator is confined in a hazardous zone, the
 actuator can be unlocked manually by pressing the rear unlocking button.

[^5]: 0 (Actuator insertion position)

 Monitor Circuit (door closed, NC
 Monitor Circuit (unlocked, NO) Monitor Circuit (locked, NC)
 3.3 (Locked position)

 - The operation characteristics shown in the chart above are of the HS9Z-A51. For other actuators, add 1.3 mm .
 - The operation characteristics show the contact status when the actuator enters the entry slot of an interlock switch.

